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Abstract

Hedges' (1982) test of homogeneity for the fixed effects model is frequently used in

quantitative meta-analyses to test whether effect sizes are equal. Despite its widespread use,

evidence of the behavior of this test for the less-than-ideal case of small study sample sizes

paired with large numbers of studies is contradictory, and its behavior for nortnormal score

distributions in primary studies is an open question. The results of a Monte Carlo study

indicated that the Type I error rate and power of the homogeneity test were insensitive to

skewed score distributions, but were very sensitive to smaller study sample sizes paired with

larger numbers of studies. These findings extend earlier results and help to clarify the statistical

behavior of the homogeneity test. Specifically, the pairing of small study sample sizes with large

numbers of studies tends to produce conservative Type I error rates for the homogeneity test and

underestimates its power, increasing the likelihood of Type II errors.
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An Empirical Study of the Hedges (1982) Homogeneity Test

The homogeneity test for fixed effects models proposed by Hedges (1982) provides a

vehicle to model variability among effect sizes that has been widely used in meta-analysis.' For

example, the journal Psychological Bulletin published 43 quantitative meta-analyses during the

seven-year period from 1988-1994, 23 of which (53%) employed Hedges' homogeneity (Q) test.

The genesis of this paper was the informal observation that published meta-analyses reporting

Q tests (including the 23 meta-analyses using the Q test in Psychological Bulletin articles) rarely

comment on whether the assumptions underlying this test are tenable, specifically, that the

scores in primary studies are independently and normally distributed with a common variance

and that the large sample properties of the test hold for small study sample sizes. Wolf (1990),

among others, has expressed similar concerns.

The limited attention paid to assessing the assumptions of the Q test in published meta-

analyses may be attributable to editorial policy devoted to minimizing the length of a paper, or

to meta-analysts counting on the insensitivity of the Q test to assumption violations. For

example, meta-analysts may know that the assumptions of the two sample t-test must technically

be satisfied to ensure the validity of the Q test but be unconcerned with violations of the

normality and equal variance assumptions because of the abundant analytic (e.g., Gayen, 1949;

Srivastava, 1959) and simulation evidence (Harwell, Rubinstein, Hayes, & Olds, 1992; Sawilosky

& Blair, 1992) documenting the robustness of the t-test. (The sensitivity of the t-test to

dependencies is well documented). Of course, it is also possible that the lack of attention paid

to assumption violations is the result of simple neglect.

1Many tests of homogeneity are available (c.f., Alexander, Scozzaro, & Borodkin, 1989);
however, only the test of homogeneity of effect sizes representing standardized mean differences
is considered.
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Regardless of why published meta-analyses have paid little attention to assumptions of

the Q test, it is not at all clear that the well-documented robustness of the t-test to nonnormality

and small sample sizes is transmitted to the Q test. This study examined the effect of nonnormal

score distributions in primary studies and their interaction with small study sample size and

large numbers of studies on the Q test.

Why Does the Power of the Q Test Matter?

The Q test provides evidence of the adequacy of the model specified through the null

hypothesis (Shadish & Haddock, 1994, p. 267). Chang (1992) described potential problems with

using the Q to test for the adequacy of an explanatory model. In contrast to hypothesis testing

in many primary studies, meta-analysts are often content to retain the tested null hypothesis

since this suggests that whatever model is being tested adequately characterizes the variation

in the effect sizes. In many ways, the use of the Q test in meta-analyses mimics the use of

stepwise multiple regression procedures in which a nonsignificant result is often used as

evidence that the regression model at the previous step is adequate for explaining variation in

the outcomes. Chang suggested that meta-analysts should be especially concerned about the

likelihood of Type II errors (i.e., retention of a false null hypothesis) since a Q test which was

under-powered would lead to an unacceptably high probability of wrongly concluding that the

model fits the data.

Chang described another reason why the power of the Q test is a concern. Retention of

the homogeneity hypothesis is often followed by pooling the sample effect sizes and testing

whether the weighted average effect size differs from 0. This two-stage procedure breaks down

if the Q test of homogeneity has an unacceptable high probability of a Type II error since Ho

would be retained too often, meaning that the results of the test of the average effect size in the
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second stage may be misleading. Thus, factors which increase the probability of a Type II error

beyond acceptable levels for the Q test are a special concern.

The Q Test

Consider a collection of effect sizes for i = 1, 2, ..., k studies involving two independent

groups. The effect size is defined as

Si = (11,E
(1)

where 8, is the population effect size for the ith study, piE and pic are population means on some

metric variable Y, and a is tie standard deviation assumed to be common to both populations.

(The notation used in Hedges & Olkin (1985) is followed). The unbiased estimator of 8, is

approximately

Idi = "iiE c

s 4N1-9
[ - 31

(2)

where C'E is tlr: sample mean of the experimental group, Yc is the sample mean of the control

group, s is the sample pooled within-groups standard deviation (assuming aE = at), and N, is

the total sample size for the ith study. The d statistic in equation (2) is also the minimum

variance estimator of 8, and is distributed as a noncentral t meaning that hypothesis testing

involving the d, takes on the usual assumptions of the two sample t-test for independent means.

Hedges (1982) used the fact that the large- sample distribution of d, is normal to construct

tests of the homogeneity of the 8,. If the group sample sizes within a study niE and xi,' increase

at the same rate, then, asymptotically, d, N(81, 062), where 062 is approximated by

Ni cli2

ad2 = (3)
flEflC 2N,



(Hedges & (Tlkin, 1985, P. 86).

The h ypothesis Ho: 8, = 82 = = Sk is tested with the statistic

Q = - d+)2/ad2i (4)

4

where d+ is an average of the d, weighted by [ad21-1. Under Ho, Q is asymptotically distributed

as a central chi-square variable with k-1 degrees of freedom. As noted above, retention of Ho

is typically followed by pooling the d1 and testing the weighted average d+ against 0, i.e.,

Ho: 8+ = 0. Hedges and 01kM (1985, P. 112) showed that d, N(8 a26+).

If the 8, are not equal then Q has a noncentral chi-square distribution k-1 degrees of

freedom and noncentrality parameter (Chang, 1992):

(81,

= El

028-

(5)

Review of the Literature

Box (1953) noted that the insensitivity of the Type I error rate and power of a test to

assumption violations is an important consideration in evaluating the test. The widespread use

of the Q test suggests that its Type I error rate and power have been widely studied under

realistic conditions (e.g., small sample sizes and skewed score distributions in primary studies).

Surprisingly, this does not appear to be the case.

Wolf (1990) pointed out that published meta-analyses have paid little attention to the

consequences of failing to satisfy the underlying assumptions of various meta-analytic tests and

that little work has been done to evaluate the effect of assumption violations [A notable

exception has been the development of robust and nonparametric effect size estimators.]

Rosenthal and Rubin (1982) noted that the behavior of tests of homogeneity was not well
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understood, a comment echoed by Chang (1992), who indicated that little was known of the

power of the Q test for realistic settings such as small numbers of studies and small sample sizes

within primary studies.

Hedges and Olkin (1985, p. 125) reported the results of a Monte Carlo study of the fit

between the chi-square distribution and the distribution of Q when the 8, were equal (but not

zero). Their results indicated that, conditional on the score distributions being normally

distributed with a common population variance, k = 5 resulted in slightly conservative Type I

error rates for N, = 20 and somewhat less conservative values for NI, = 100. In all cases, sample

sizes within studies were equal. However, whether the between-study sample sizes were equal

or unequal appeared to have no effect on Type I error rates. Hedges and Olkin (1985, p. 124)

indicated that, on the whole, the Q test appears to be slightly conservative, which suggests that

the probability of a Type II error may be slightly higher than might be desired, and that the

large-sample approximation to the Q distribution improves as 8, and N, increase.

Chang (1992) performed a Monte Carlo study to examine the Type I error and power of

the Q test which appears to be the most exhaustive investigation available. Chang began by

surveying approximately 60 published meta-analyses for the period 1985-1990 for guidance in

selecting simulation factors and their values. Chang investigated varying numbers of studies

(k = 2, 5, 10, 30), sample size pairings (e.g., n,E = n,C =10, n,E = 10, n, = 20), and various

noncentrality patterns, including (a) All but one of the k effect sizes were the same 81 = =

= 0 and ö = .1, .25, .5, .75, 1, (b) All but two effect sizes were the same 81 = = 81(.2 = 0 and 8,

ekk = .1, .25, .5, .75, 1, (c) Simulating three clusters of 8 values, 0, ...,0; 8,...,8, and 28,...,28. Chang

simulated t statistics for the primary studies under the assumption that the raw scores were

independently and normal: distributed with a common variance, and summarized her findings

by comparing theoretical and power curves with goodness-of-fit tests and by using analysis of
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variance and regression procedures to model variation in the empirical proportions of rejections

as a function of study characteristics.

Chang drew the following conclusions after comparing the empirical and theoretical

power values (a) The maximum discrepancies occured when larger numbers of studies (e.g., k

= 30) were paired with smaller study sample sizes (e.g., N1= 20). Because Chang did not report

the actual power values it is difficult to judge the magnitude of the discrepancies, although there

is evidence that most of the discrepancies were less than .2. (b) The fit between empirical and

theoretical power curves was quite good for larger Ni (e.g., 60) regardless of the value of k (c)

Whether primary studies had equal or unequal sample sizes did not have much effect on how

closely empirical power curves matched their theoretical counterparts (d) Type of noncentrality

pattern appeared to affect the fit between empirical and theoretical power values, particularily

as k increased, although larger study sample sizes tended to mitigate this effect. The pattern of

one extreme effect size and the rest equal produced the most discrepancies with the empirical

power values typically exceeding the theoretical values. These results support the observation

of Fleiss and Gross (1991) that a single study (i.e., a single effect size) may exert a powerful effect

on the meta-analytic results. Chang also reported that the small Ni, large k pairing produced

inflated Type I error rates, a finding which conflicts somewhat with that reported in Hedges and

Olkin (1985, p. 125), although the latter study was limited to k = 2, 5. Inflated Type I error rates

may explain why Chang's empirical power values exceeded theoretical power values for these

same conditions. For other N, and k pairings, Chang's Type I error results were generally

consistent with those reported in Hedges and Olkin (1985, p. 125).

In short, the available evidence suggests that, conditional on the scores in primary studies

being independently and normally distributed with a common variance, the Type I error rate

and power of the Q test are close to theoretical values except for the case in which small N, are

9
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paired with larger k. It is important to note that Chang's survey provided evidence that this

particular pairing does occur in published meta-analyses and, thus, should be of some concern

for meta-analyses using the Q test under these conditions.

Methodology

Ideally the effect of assumption violations on the Type I error rate and power of the Q

test would be studied using analytic methods; unfortunately, such solutions are quite difficult

or impossible. As a substitute, a Monte Carlo study was performed to address the following

research question: What are the effects of nonnormal score distributions on the Type I error rate

and power of the Q test for varying study sample sizes and numbers of studies (assuming one

effect size per study)? In all cases the data were homoscedastic.

Simulation Factors

The factors and their values selected for the Monte Carlo study reflect those of Chang

(1992) and Hedges and Olkin (1985, p. 125). The design of the Monte Carlo study was a four-

factor, fully-crossed factorial involving k, Ni, 8, and type of score distribution.

Recall that Chang found little effect on Type I error rates and power for normally

distributed scores for large N,. Since skewness appears to play an important role in the behavior

of tests of location parameters (c.f., Harwell, et al., 1992), three increasingly skewed distributions

were simulated and identified by their skewness (y1) and kurtosis (12). These were moderately

skewed and leptokurtic chi-square distributions with v = 8 degrees of freedom (y, = 1, y2 = 3),

skewed and leptokurtic (y, = 1.5, 12 = 5), and a chi-square with v = 2 (y, = 2, y2 = 6). Data for a

normal distribution (y1 = y2 = 0) were also simulated.

0
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Other factors in the Monte Carlo study focused on Chang's findings for small sample

sizes paired with large numbers of studies. The numbers of studies modeled were k = 5, 10, and

30, with group sample sizes of 5,5, 10,10, and 20,20. Unequal sample sizes were not included

because of Chang's finding that equal and unequal sample sizes for the within or between study

cases appeared to have the same effect on the Q test.

Only the noncentrality pattern studied by Chang which produced the most dramatic

effect on power values, i.e., 81 = = 8" = 0 and 8k = 0, .5, 1, 1.5, was studied. The noncentrality

effect was created by adding the appropriate 6 value to each score in the targeted group. For

example, for k = 5, 81 = = 64 = 0, 65 = .5 was added to each raw score in group 1 in study 5.

Following the recommendations of Naylor, Balintfy, Burdick, and Chu (1968), Hoaglin

and Andrews (1975), Lewis and Orav (1989), and others that Monte Carlo studies should be

treated as statistical sampling experiments subject to the same guidelines as empirical studies,

the empirical Type I error rates and power for the Q test were analyzed using inferential

procedures. This enabled the contribution of sampling error to be evaluated and the magnitude

of significant effects to be estimated.

Data Generation

The data generation was done using a Gateway 4DX-33 486 microcomputer. All

programming was done in FORTRAN IV supplemented by locally-written subroutines. The

following process was performed to generate data: (a) NI; standard normal deviates were

simulated using a random number generator given in Numerical Recipes (Press, Flannery,

Teukolsky, & Vetterling, 1986), which were transformed to the the specified nonnormal form

following the method of Fleishman (1978). These values were then assigned to one of two

groups. (b) Constants equal to the specified 8 values were added to scores in the ta get groups

11



9

to create the desired noncentrality pattern. (c) The d, were calculated using equation (2) and ad2

using equation (3), (d) Steps (a)-(c) were repeated k times, simulating the results of a single

meta-analysis with k effect sizes. (e) The Q statistic was computed for the k effect sizes using

equation (4) and compared to the appropriate central chi-square critical value at the a = .01, .05,

and .10 levels of significance. (f) Steps (a)-(e) were repeated 2000 times (The same number of

replications employed by Hedges (1982) and Chang (1992)) for each combination of simulation

factors.

The proportion of significant Q tests across the 2000 replications represented empirical

Type I error rates and power values and were used to judge the robustness of the Q test to

assumption violations. The resulting 4 (score distribution) x 3 (Sample size) x 3 (Number of

studies) x 4 (8 values) design was replicated to permit error variation to be estimated within each

cell Thus, two empirical empirical proportions of rejections per cell were generated.

Results

Adequacy of the Simulation

The adequacy of the simulation was judged by examining the skewness, kurtosis, and

cl, values across the conditions studied, and by examining empirical Type I error rates and power

values when the scores were normally distributed for large N2, in which case these values should

be close to theoretical values. After examining plots of the simulated scores, skewness and

kurtosis indices were computed. The normal approximation was quite good, producing

skewness and kurtosis values very close 0. The nonnormal distributions all showed the pattern

of producing skewness and kurtosis values equal to or slightly less than the specified yi and y2

values. For example, for y1 = 1.5, y2 = 5, the average skewness and kurtosis values were 1.4 and

4.85, repectively; for y1 = 2, y2 = 6 the average values values were 1.9 and 5.8, respectively. Thus,

12
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the simulated nonnormal data were slightly less nonnormal than anticipated. The cl, were also

quite close to the target values, especially for larger sample sizes. Even for N1= 10 the deviation

of the d, from the specified value tended to be modest. For example, for 8 = 1, N, = 10, and a

normal distribution, the average d, was .95.-, On the whole, the simulated data appeared to

possess (approximately) the desired properties.

Type I Error Rates of the Q Test

When 8 e.-.-v.ialed 0 the proportion of rejections represented empirical error rates. These

values are reported in Table 1. Because the empirical error rates for a = .01, .05, and .10

produced similar patterns, only the values associated with .05 appear in Table 1. Perhaps the

most striking feature of the 8 = 0 results is that almost all of the Type I error rates are below .05

and that many are quite conservative, especially for larger k paired with a smaller N,. The k =

5 results are consistent with those reported by Hedges and Olkin (1985, p. 125) but conflict with

those of Chang (1992), who reported inflated Type I error rates as large as .10 for the large k,

small N, pairing. A few additional computer runs were done with N, = 120 (60 per group) to

see if empirical error rates converged to .05. For k = 5, 10, and 30, the error rates for N, = 60

were .039, .056, and .053, respectively, the latter two being within an acceptable range if

sampling error is taken into account. The .039, on the other hand, was still conservative. Type

of distribution appeared to have little effect on error rates. On the other hand, k and N,

appeared to have a direct effect on error rates.

Power of the Q Test

Setting 8 = .5, 1, or 1.5 produced estimated power values for the Q test. These values are

also reported in Table 1, where the resulting pattern is similar to that observed in the Type I

13
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error case; namely, power was largest for a given 8 when larger N, were paired with smaller k,

and decreased as k increased for a fixed N1, a result which agrees with Chang (1992). In all

cases, N1 and k appeared to be the dominant factors, whereas the effect of increasingly

nonnormal dstributions appeared to be to slight. Predictions about power appear to depend

heavily on the relationship between Ni, k, and 8.

Theoretical power values were computed to assess their agreement with empirical values

by assuming a normal distribution for the scores and using the equation developed in Chang

(1992) and the noncentrai chi-square table in Owen (1962). Theoretical power values for the 8

1.5 case and a = .05 are illustrative of the general pattern and are reported in Table 1 in

parentheses.

The comparison of empirical versus theoretical power values for all values of k and N,

suggest two conclusions. First, empirical power values decreased dramatically as k increased,

especially for smaller N1, so much so that in some cases the power was only slightly larger than

the empirical Type I error rate (Overall, 1969 discusses this phenomenon). Second, the empirical

and theoretical power values in Table 1 tend to agree with Chang's findings that the magnitude

of the misfit depends heavily on how k and Ni are paired and that discrepancies shrink as Ni

increases, but the two sets of findings disagree in the direction of the misfitting. The results in

Table 1 indicate that empirical power values were typically less than theoretical values for the

small Ni, large k cases, whereas Chang reported that empirical power values typically

overestimated theoretical values for these conditions. This discrepancy may be attributable to

different patterns of Type I error rates for the large k, small N, pairing. Chang's inflated Type

I error rates under these conditions would, other things being equal, be expected to produce

higher power values, whereas the conservative Type I error rates reported in Table 1 could

14
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explain the underestimation of power. The results in Table 1 are generally consistent with

Chang's findings for larger N.

Data Analysis

Examining Table 1 is instructive but leaves open the possibility that important patterns

in the empirical proportions of rejections may be missed or that the magnitude of effects may

be inissestimated. To test for the presence of interactions and to estimate the magnitude of

significant effects the empirical proportions were analyzed using weighted least squares multiple

regression. The predictors in these models were NI1, k, 11, and 12, the latter two variables being

used to represent type of distribution.2 The predictors were centered to minimize collinearity

problems due to scaling. The proportions of rejections (e.g., p) served as outcomes, with weights

of (62p)'. Analyses were conducted separately for the 8 = 0 (Type I error) and 8 0 (power)

cases. Only the results for the a = .05 case are reported in Table 2.

Two regression models were fitted to the empirical error rates: a main effects model and

a second model containing both main effects and two-way interaction terms. This allowed the

contribution of the interactions to be investigated. An examination of the residuals revealed no

unusual patterns in the data.

The results in Table 2 for 8 = 0 indicate that the empirical error rates of the Q test were

insensitive to the predictors. This supports the notion that the Type I error rate of the Q test is

generally robust, although it is worth restating that the error rates were uniformly below .05.

The model 2a results for the 8 0 case indicate that the empirical power values proved to be

quite sensitive to the predictors in models 2a and 2b. The Wad, = .98 for model 2b indicates that

2Chang (1992) used N"2 and K1/2 as predictors. Analyses were done using N and K and, separately,
N"2 and K"2. These results were similar.

15
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virtually all of the variation in the power values is explained by the regression model. The

different Wadi values in model 1 versus model 2 occur because, while the Type I error rate of a

statistical test like the Q test may be insensitive to factors like type of score distribution, its

power is directly and highly dependent on noncentrality parameters. Similar results have been

reported by Harwell, et al., (1992) and Lix, Keselman, and Keselman (1992). Restricting the

predictor values of k to 10 and 30, and those of N, to 10 and 20, which seemed to have the

greatest effect on Type I errors and power, produced regression results very similar to those in

Table 2. Thus, the conclusions do not appear to hold only for the large k, small N, pairing.

Interestingly, all of the estimated standardized regression coefficients for model 2 were less than

.06 in value and fairly indistinguishable.

Conclusions

It appears that meta-analysts need not be concerned that nonnormaly score distributions

will have much effect on Type I or Type II error rates of the Q test. However, the pairing of

study sample size and number of studies appear to play a crucial role in the Type I and Type

II error behavior of the Q test. Chang (1992) summarized her findings by statuing put it,

"...homogeneity tests were more sensitive than indicated by theory for data with small sample

sizes..." (p. 59). The findings of the present study and those of Chang (1992) support this

statement, but disagree in the direction of the sensitivity. Both sets of findings suggest the Type

II error rate of the Q test is affected by particular pairings of study sample size and number of

studies, but disagree in whether the probability of a Type ll error is higher or lower than

indicated by theory. On the other hand, for pairings in which study sample size is noticeably

larger than the number of studies in the meta-analysis, both sets of findings agree that the

likelihood of committing a Type II error with the Q test is consistent with theory.
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Implications for Future Research

Additional empirical studies are needed to resolve current discrepancies in the behavior

of the Type I and Type II error rates of the Q test for specific pairing of study sample size and

number of studies, and to provide evidence about the magnitude of the discrepancies. Another

useful addition to the metaanalytic literature would tables of noncentrality values for Q for

combinations of study sample size and number of studies.

17
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Table 2+
Analysis of Empirical Error Rates

8 = 0

dfRegression dfResidual R2adjModel 1

la 4 67 not sig.
lb 10 61 not sig.

Model 2 dfRegression dfResidual R2adi

2a 4 211 .42
2b 14 201 .98

+Note. Model la and lb were main effects models which used the
skewness, kurtosis, study sample size, and the number of studies
as predictors; models lb and 2b used both main effects and two-way
interactions as predictors.


